

Lombos Avenue, San Isidro, Parañaque City www.patts.edu.ph

VISION

To become the Centre of Excellence in aviation education

MISSION

- a. To provide quality aviation education and
- b. To assist our graduates in the labor market

BASIC STUDIES EDUCATIONAL OBJECTIVES	Mi	ssion
BASIC STUDIES EDUCATIONAL OBJECTIVES	а	b
1. To provide students with a good and solid foundation in mathematics, basic engineering sciences, engineering drawing, physics, general chemistry and other branches of natural sciences and to apply knowledge to aviation and other related discipline.	\checkmark	\checkmark
2 To develop communicative skills in listening, speaking, reading, writing and graphics communication pertaining to technical drawing interpretation.	\checkmark	\checkmark
3. To teach and train students the importance of humanistic values and respect of cultural differences through humanities and social sciences.	\checkmark	\checkmark
4. To impart high ethical standards to the students through assimilation and incorporation in the learning activities.	\checkmark	
5. To infuse students with enhanced computer concepts and expertise through incorporating competent applications and disciplines.		
6 To acquire the total human development according to its physical, mental, emotional, social aspects in promoting a healthy lifestyle.		

COURSE SYLLABUS

1. Course Code:NSCI121

2. Course Title:General Chemistry 2

3. Pre-requisite/s: General Chemistry 1, General Chemistry 1 Lab, College Algebra, Trigonometry

4. Co-requisites: NSCI 121L

5. Credit: 3 units lecture

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	1 of 9
-		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			

6. **Course Description:** Gases, atmospheric pressure, absolute temperature, gas laws, application of gaslaws, kinetic molecular theory, ideal gas laws, real gas, Intermolecular forces, Liquids and Solids; Solutions, Saturated solution and Solubility, Ways of expressing concentration, Colligative properties; Colloids; Chemical Kinetics, Chemical Equilibrium; Acid-BaseEquilibria; Electrochemistry; Chemistry of the Environment; Chemistry of Life, Organic and Biological

		Basic S	tudies E	ducationa	al Objectiv	es
PROGRAM OUTCOMES	1	2	3	4	5	6
a. An ability to apply knowledge of mathematics, physical sciences, engineering sciences to the practice of aviation and aviation related program.	\checkmark	\checkmark		\checkmark	\checkmark	
b. An ability to design and conduct experiments to test hypotheses and verify assumptions, as well as to analyse and interpret data and to simulate processes.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
c. An ability to design, improve, innovate, and to supervise systems or processes to meet desired needs within realistic constraints.	\checkmark	\checkmark		\checkmark		\checkmark
d. An ability to work effectively in multi-disciplinary and multi- cultural teams in diverse fields of practice.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
e. An ability to identify, formulates, and solves aviation and aviation related program problems.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
f. An understanding of the effects and impact of the aviation and aviation related program profession on the environment and the society, as well as the social and ethical responsibilities of the profession.		\checkmark	\checkmark	\checkmark		
g. Specialized knowledge in at least one field of aviation and aviation related program practice, and the ability to apply such knowledge to provide solutions to actual problems.	\checkmark	\checkmark		\checkmark	\checkmark	
h. An ability for effective oral and written communications particularly in the English language.	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
i. An ability to engage in life-long learning and to keep current of the development in a specific field of specialization.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
j. An ability to use the appropriate techniques, skills and tools necessary for the practice of aviation and aviation related program.	\checkmark	\checkmark	\checkmark		\checkmark	
k. A knowledge of contemporary issues.	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
1. An ability to apply acquired aviation and aviation related program knowledge and skills for national development.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

8. Course Objectives and Relationship to Program Outcomes:

Course Object	tives		PROGRAM OUTCOMES											
The students s	should be able		а	b	с	d	e	f	g	h	i	j	k	1
1. To recognize and distinguish the different gas laws and relate them to the field of aviation science.			\checkmark			\checkmark			\checkmark	\checkmark				
Course Title: General Chemistry 2	Date Effective: A.Y.2012-2013	Prepared b Editha E. D Albert Soria Heide Sanc Fernando P Amelia San	omingo ano hez 'aguirigar	l	Review Engr.Ed	ed by : litha E. D	Domingo	Lorenz	ved by zo L. na · Acade: s	val, Jr.		P a g e 2 of 9	I	

2. To summarize and design activities that relates gas principles, chemical equilibrium and condition to mathematical expression from simple to complicated problem.	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	 	
3. To applythe different calculation techniques in solving problems in concentration of solutionsand chemical laws and use this in relation to aircraft industry.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		

9. Course Coverage

WEEK	TOPIC/ACTIVITY	METHODOLOGY & STRATEGY	ASSESMENT &EVALUATION TOOLS
1	Orientation and Introduction to the course Course Policies and Guidelines, Nature and Scope of the course, PATTS Mission and Vision	Discussion of course policies and guidelines	
	Gases Properties and Behaviors of gases Volume, Pressure and Temperature	Lecture and Discussion	Seatwork Recitation
	Kinetic Molecular Theory	Lecture and Discussion Class interaction	Recitation
2	The Gas Laws Boyle's Law Charles' Law	Lecture and Discussion Sample Problems	Seatwork Homework
	Gay-Lussac's Law Combined Gas Law	Lecture and Discussion Sample Problems	Seat work Board work
	Quiz No. 1		Quiz Discussion
3	Dalton's Law of Partial Pressure	Lecture and Discussion Sample Problems Pair work	Seatwork Home work
	Ideal Gas Law Comparison of Real and Ideal Gas	Lecture and Discussion Sample Problems Class Interaction	Homework
	Quiz No. 2		Quiz Discussion

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	3 of 9
-		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			

	Further Applications of Gas Laws		
	Calculation of Molecular weight	Lecture and	Seatwork
	a. Avogadro's Law	Discussion	Homework
	b. Graham's Law of Diffusion	Pair work	Homework
	c. Ideal Gas Law	I all work	
4	c. Ideal Gas Law		
	Calculation of Gas Density	Lecture and	Seatwork
	a. Avogadro's Law	Discussion	Homework
	b. Ideal Gas Law	Sample Problems	Board work
	0. Iddal Gus Luw	Sumple Problems	Dourd work
	Quiz No. 3		Quiz Discussion
	Reactions Involving Gases	Lecture and	Seatwork
	a. Volume-Volume	Discussion	Homework
	Gay Lussac's Law of Combining	Sample Problems	
	Volumes	1	Recitation
5	b. Mass- Volume Relationship	Lecture and	Seatwork
	c. Volume – Mass Relationship	Discussion	
		Sample Problems	
			Assignment
L	iquefaction of Gases	Discussion	6
-	a. Critical Temperature	Class Interaction	
	b. Critical Pressure		
	PRFI IMINAD	Y EXAMINATION	
	I KELIVII VAK		
	iquid		
	Behavior of Liquids		
	Properties of Liquids		
6	a. Viscosity	Lecture, Discussion	
	b. Surface Tension	and Class Interaction	Research
	c. Capillary Action		
		Lecture, Discussion	Seat work
	d. Evaporation	and Class Interaction	Home work
	e. Vapor Pressure		
	f. Boiling Point		
	g. Heat of Vaporization		
	olids		
	Behavior of Solids		
	Types of Solids	Lecture and	Seatwork
	tructure of Solids	Discussion	Homework
P	Bonding in Solids	Reporting	
1-	Ieat Fusion		
	Quiz 1		Quiz 1 Discussion
E			
F			
H C	Colutions	Lecture Discussion	Seatwork
H C S T	Types of Solutions	Lecture, Discussion	Seatwork
H C S T		Lecture, Discussion Class Interaction	Seatwork Homework

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	4 of 9
		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			

	MIDTER	M EXAMINATION	
11	Properties of Colloids Uses of Colloids Importance of Colloid Chemistry	Reporting Discussion Cooperative Learning	Seatwork Homework
	The Colloidal System Parts of Colloids Types of Colloids Formation of Colloids	Discussion Cooperative Learning Reporting	Research Homework
	Quiz No. 4		Quiz Discussion
10	Vapor Pressure Depression Osmotic Pressure	Lecture Discussion Cooperative Learning	Seat work Home work Recitation
	Colligative Properties Raoult's Law Freezing Point Depression Boiling Point Elevation	Lecture Discussion Cooperative Learning	Seat work Home work
	Quiz No. 3		Quiz Discussion
9	Dilution and Mixing problems Titration Reactions Involving Gases	Lecture, Discussion Pair work	Seat work Home work
	Mole Fraction Normality	Lecture, Discussion Group work	Seatwork Homework
	Quiz 2		Quiz Discussion
	Molarity Molality	Lecture Discussion Sample Problems	Seat work Home work
8	Concentration of Solutions Percent by Mass Percent by Volume Mass per Volume	Lecture Discussion Sample problems	Seat work Home work

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	5 of 9
-		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			

	Chemical Kinetics		
	Rate of Chemical reaction		
		L a atuma an d	C a a trava mla
	Factors Affecting the Rate of Chemical	Lecture and	Seatwork
	Reaction	Discussion	Homework
	Nature Of Reactants	Cooperative Learning	
	Activation Energy		
	Catalyst		
12	Effect of Concentration on the Rate of	Lecture and	Seatwork
	Chemical reaction	Discussion	Homework
	Reversible Reactions	Cooperative Learning	Research
	Chemical Equilibrium		
	Chemical Equilibrium Constant		
	Problems Involving K_{eq}		
	Le Chatelier's Principle		
	Quiz No. 1		Quiz Discussion
	Quiz 100. 1		Quiz Discussion
	Acids, Bases and Salts	Lecture and	Seatwork
	Arthenius Concept	Discussion	Homework
		Discussion	HOILEWOIK
10	BronstedLowry Concept		
13	Conjugate Acids and Bases		
	Strength of Acids and Bases		
	Buffer System	Lecture and	Seatwork
	Ionic Equilibria	Discussion	Homework
	Ionization of Water	Cooperative Learning	
	K_a and K_b		
	Common Ion Effect		
	Solubility Equilibria		
	5 1		
	Quiz No. 2		Quiz Discussion
	Chemical Thermodynamics		
	First Law of thermodynamics		
	Thermodynamic Terms	Lecture, Discussion	Seatwork
	Enthalpy Changes	and Class Interaction	Homework
	Calorimetry	Lecture, Discussion	Seatwork
14	Thermochemical Equations	and Class Interaction	Homework
	Molar Enthalpies		
	Hess's Law		
	Bond Energies	Lecture, Discussion	Seatwork
	Changes in Internal Energies	and Class Interaction	Homework
	5	and Class Interaction	Homework
	Relationship of ΔH and ΔE		
	Quiz No. 3		Quiz Discussion
	Electrochemistry		
15	Electrical Conduction	Lecture, Discussion	Seatwork
	Electrodes	and Cooperative	Homework
	Electrolysis of molten salts	Learning	
	Electrolysis of aqueous salt	-	
	Faraday's Law of Electrolysis	Lecture, Discussion	Seatwork
	Commercial Applications of Electrolytic cells	and Cooperative	Homework
		Learning	Research
		Learning	Resourch

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	6 of 9
-		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			

	Environmental Chemistry		
	Atmosphere	Lecture and	Seatwork
	Ozone Layer	Discussion	Homework
	Hydrologic Cycle	Reporting	
	Carbon Cycle		
	Nitrogen Cycle	Group Discussion	Seatwork
16	Sulfur Cycle	Class Interaction	Homework
	Phosphorous Cycle		Research
	Earth's water		
	Environmental Pollution Related to Aircraft	Group Discussion	Seatwork
	Industry:	Class Interaction	Homework
	Air, Water, Solid Waste, Hazardous Materials		Research
	Organic Chemistry		
	Saturated Hydrocarbons	Group Discussion	Seatwork
17	Naming of Saturated Hydrocarbons	Reporting	Homework
		Class Interaction	Research
	Unsaturated Hydrocarbons		Seatwork
	Aromatic Hydrocarbons	Group Discussion	Homework
		Reporting	Research
		Class Interaction	
	Functional Groups		Seatwork
	Fundamental Classes of Organic Reactions	Group Discussion	Homework
	-	Reporting	Research
		Class Interaction	
18	Final Exa	mination	

10. Course Outcomes and Relationship to Course Objectives / Program Outcomes

Course Outcomes		Course Program Program					am (n Outcomes							
A Student completing this course should be at the minimum be able to:	1	2	3	а	b	с	d	e	f	g	h	i	j	k	1
1.apply appropriate units to describe accuracy and precision in measurement	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark			
2. perform conversion of units	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark			
3. determine the effects of pressure, temperature and volume to different gases in ideal and non-ideal condition	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			
4. state the effect of intermolecular forces to solution formation and identify the factors that affects solubility	\checkmark	\checkmark			\checkmark	\checkmark						\checkmark			

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	7 of 9
-		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			

5. solve problems involving concentration of solution; specifically in acid and base reaction using titration process	\checkmark			\checkmark	\checkmark	\checkmark						
6. identify the different colligative properties and recognize the importance of these properties to daily life				\checkmark		\checkmark						
7. distinguish the different types of colloids and relate some of its useful properties which is important to industry	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		
8. appreciate some useful ways of expressing concentration	\checkmark			\checkmark	\checkmark	\checkmark						
9. discuss the factor that affects the rate of a chemical reaction; solve problem; involving reaction rate	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		
10.write equilibrium constant expression for reversible reactions	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark						
11.interprete the magnitude of an equilibrium constant		\checkmark		\checkmark	\checkmark	\checkmark						
12. calculate the value of an equilibrium constant using equilibrium concentrations of reactants and products		\checkmark	V	\checkmark	\checkmark							
13. predict the equilibrium concentration of reactants and products				\checkmark	\checkmark	\checkmark				\checkmark		
14. distinguish the direction in which a reaction must proceed in order to achieve equilibrium	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		
15. distinguish acids, bases and salts	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		
16. state the law of thermodynamics and relate the energy changes in a chemical reaction.		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		
17. solve problems using Faraday's law of Electrolysis.18. relate environmental pollution to												
18. relate environmental pollution to aircraft industry.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		
19. learn the basics of Organic Chemistry	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		

11. Contribution to Course to Meeting the Professional Component:

General Education: 5% Basic Sciences and Mathematics: 95% 100%

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano Heide Sanchez		VP for Academic Affairs	8 of 9
		Fernando Paguirigan Amelia Santos			

12. Textbook: Chemistry (Revised Edition) by Rebecca S. De Borja, Books Atbp, 2011

13. References:

a. General Chemistry-One Semester 6th ed. by Chang, McGraw Hill, 2011 b.Principles of General Chemistry 2thed. by Silberberg, C&E Pub. Inc; 2011

c.a. Brown, LeMay, Bursten, Chemistry, The Central Science, 10thed, Prentice Hall, 2002

d. Whiten, Davis, Peck, Stanley, General Chemistry, 7thed, Brooks/Cole Div Thomas Learning,2005

e. Ebbing & Gammon, General Chemistry, 9thed, 2009

f. Chang, Raymond, General Chemistry, 5thed, 2008

14. Course Evaluation

The Final Course Grade = $\frac{\text{Prelim Grade + Midterm Grade + Final Grade}}{\text{Prelim Grade + Final G$

3

The Periodical Grade is computed as follows:Classwork60%Periodical Exam40%

Total 100%

The Classwork is computed as follows:

Homeworks, Seatworks, Recitations,Problem Set40% Quizzes 60%

Total 100%

Grading Scale:

Final Average	Grade	Final Average	Grade
Below 70	5.0	84-86	2.0
70-73	3.0	87-90	1.75
74-76	2.75	91-93	1.5
77-80	2.5	94-97	1.25
81-83	2.25	98-100	1.0

15. Committee Members:

Engr. Editha Domingo-Head Engr. Amelia C. Santos Mr. Albert V. Soriano Date: March 14,2012

Course Title:	Date	Prepared by:	Reviewed by:	Approved by: Engr.	
General	Effective:	Editha E. Domingo	Engr.Editha E. Domingo	Lorenzo L. naval, Jr.	Page
Chemistry 2	A.Y.2012-2013	Albert Soriano		VP for Academic	9 of 9
		Heide Sanchez		Affairs	
		Fernando Paguirigan			
		Amelia Santos			